
Introduction to Asymptotic Analysis
Lecture 13

1

CS Math 61B, Spring 2024 @ UC Berkeley
Slides credit: Josh Hug

Goal: Measuring Code Efficiency
Intuitive Runtime Characterizations

• Clock Time
• Exact Operation Counting
• Exact Count Exercise

Asymptotic Analysis
• Why Scaling Matters
• Computing Worst Case Order of

Growth (Tedious Approach)
• Computing Worst Case Order of

Growth (Simplified Approach)
Asymptotic Notation

• Big Theta (a.k.a. Order of Growth)
• Big O and Big Omega

Goal: Measuring
Code Efficiency
Lecture 13, CS61B, Spring 2024

61B: Writing Efficient Programs

An engineer will do for a dime what any fool will do for a dollar.

Efficiency comes in two flavors:
● Programming cost (course to date. Will also revisit later).

○ How long does it take to develop your programs?
○ How easy is it to read, modify, and maintain your code?

■ More important than you might think!
■ Majority of cost is in maintenance, not development!

● Execution cost (from today until end of course).
○ How much time does your program take to execute?
○ How much memory does your program require?

Example of Algorithm Cost

Objective: Determine if a sorted array contains any duplicates.
● Given sorted array A, are there indices i != j where A[i] == A[j]?

-3 -1 2 4 4 8 10 12

Example of Algorithm Cost

Objective: Determine if a sorted array contains any duplicates.
● Given sorted array A, are there indices i != j where A[i] == A[j]?

-3 -1 2 4 4 8 10 12

Silly algorithm: Consider every possible pair, returning true if any match.

● Are (-3, -1) the same? Are (-3, 2) the same? ...

Better algorithm?

Silly algorithm: Consider every possible pair, returning true if any match.

● Are (-3, -1) the same? Are (-3, 2) the same? ...

Better algorithm?

● For each number A[i], look at A[i+1], and return true the first time you see a
match. If you run out of items, return false.

Example of Algorithm Cost

Objective: Determine if a sorted array contains any duplicates.
● Given sorted array A, are there indices i != j where A[i] == A[j]?

-3 -1 2 4 4 8 10 12

Today’s goal: Introduce formal
technique for comparing
algorithmic efficiency.

Goal: Measuring Code Efficiency
Intuitive Runtime Characterizations

• Clock Time
• Exact Operation Counting
• Exact Count Exercise

Asymptotic Analysis
• Why Scaling Matters
• Computing Worst Case Order of

Growth (Tedious Approach)
• Computing Worst Case Order of

Growth (Simplified Approach)
Asymptotic Notation

• Big Theta (a.k.a. Order of Growth)
• Big O and Big Omega

Clock Time
Lecture 13, CS61B, Spring 2024

How Do I Runtime Characterization?

Our goal is to somehow characterize the runtimes of the functions below.
● Characterization should be simple and mathematically rigorous.
● Characterization should demonstrate superiority of dup2 over dup1.

public static boolean dup1(int[] A) {

 for (int i = 0; i < A.length; i += 1) {

 for (int j = i + 1; j < A.length; j += 1) {

 if (A[i] == A[j]) {

 return true;

 }

 }

 }

 return false;

}

public static boolean dup2(int[] A) {

 for (int i = 0; i < A.length - 1; i += 1) {

 if (A[i] == A[i + 1]) {

 return true;

 }

 }

 return false;

}dup1

dup2

Techniques for Measuring Computational Cost

Technique 1: Measure execution time in seconds using a client program.
● Tools:

○ Physical stopwatch.
○ Unix has a built in time command that measures execution time.
○ Princeton Standard library has a Stopwatch class.

public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 int[] A = makeArray(N);
 dup1(A);
}

Time Measurements for dup1 and dup2

N dup1 dup2

10000 0.08 0.08

50000 0.32 0.08

100000 1.00 0.08

200000 8.26 0.1

400000 15.4 0.1

Time to complete (in seconds)

Techniques for Measuring Computational Cost

Technique 1: Measure execution time in seconds using a client program.
● Good: Easy to measure, meaning is obvious.
● Bad: May require large amounts of computation time. Result varies with

machine, compiler, input data, programming language, etc.
Interesting observation: If you double the size of
the input, dup1 takes ~4x longer, while dup2 takes
~2x longer. True regardless of language and
machine.

public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 int[] A = makeArray(N);
 dup1(A);
}

Goal: Measuring Code Efficiency
Intuitive Runtime Characterizations

• Clock Time
• Exact Operation Counting
• Exact Count Exercise

Asymptotic Analysis
• Why Scaling Matters
• Computing Worst Case Order of

Growth (Tedious Approach)
• Computing Worst Case Order of

Growth (Simplified Approach)
Asymptotic Notation

• Big Theta (a.k.a. Order of Growth)
• Big O and Big Omega

Exact Operation
Counting
Lecture 13, CS61B, Spring 2024

Techniques for Measuring Computational Cost

Technique 2A: Count possible operations for an array of size N = 10,000.

operation count, N=10000

i = 0

j = i + 1

less than (<)

increment (+=1)

equals (==)

array accesses

for (int i = 0; i < A.length; i += 1) {

 for (int j = i+1; j < A.length; j += 1) {

 if (A[i] == A[j]) {

 return true;

 }

 }

}

return false;

The counts are tricky to compute. Work not shown.

● Good: Machine independent. Input dependence captured in model.
● Bad: Tedious to compute. Array size was arbitrary. Doesn’t tell you actual

time.

1 to 10000

2 to 50,015,001

0 to 50,005,000

1 to 49,995,000

2 to 99,990,000

1

Techniques for Measuring Computational Cost

Technique 2B: Count possible operations in terms of input array size N.

operation symbolic count count, N=10000

i = 0 1 1

j = i + 1 1 to N 1 to 10000

less than (<) 2 to (N2+3N+2)/2 2 to 50,015,001

increment (+=1) 0 to (N2+N)/2 0 to 50,005,000

equals (==) 1 to (N2-N)/2 1 to 49,995,000

array accesses 2 to N2-N 2 to 99,990,000

for (int i = 0; i < A.length; i += 1) {

 for (int j = i+1; j<A.length; j += 1) {

 if (A[i] == A[j]) {

 return true;

 }

 }

}

return false;

● Good: Machine independent. Input dependence captured in model. Tells
you how algorithm scales.

● Bad: Even more tedious to compute. Doesn’t tell you actual time.

Goal: Measuring Code Efficiency
Intuitive Runtime Characterizations

• Clock Time
• Exact Operation Counting
• Exact Count Exercise

Asymptotic Analysis
• Why Scaling Matters
• Computing Worst Case Order of

Growth (Tedious Approach)
• Computing Worst Case Order of

Growth (Simplified Approach)
Asymptotic Notation

• Big Theta (a.k.a. Order of Growth)
• Big O and Big Omega

Exact Count
Exercise
Lecture 13, CS61B, Spring 2024

Techniques for Measuring Computational Cost [dup2]

Your turn: Try to come up with rough estimates for the symbolic and
exact counts for at least one of the operations.
● Tip: Don’t worry about being off by one. Just try to predict the rough

magnitudes of each.

operation sym.
count

count,
N=10000

i = 0 1 1

less than (<)

increment (+=1)

equals (==)

array accesses

for (int i = 0; i < A.length - 1; i += 1){

 if (A[i] == A[i + 1]) {

 return true;

 }

}

return false;

Techniques for Measuring Computational Cost [dup2]

Your turn: Try to come up with rough estimates for the symbolic and
exact counts for at least one of the operations.

operation symbolic
count

count,
N=10000

i = 0 1 1

less than (<) 1 to N 0 to 10000

increment (+=1) 0 to N - 1 0 to 9999

equals (==) 1 to N - 1 1 to 9999

array accesses 2 to 2N - 2 2 to 19998

for (int i = 0; i < A.length - 1; i += 1) {

 if (A[i] == A[i + 1]) {

 return true;

 }

}

return false;

Especially observant folks may notice we didn’t count
everything, e.g. “- 1” and “+ 1” operations. We’ll see
why this omission is not a problem very shortly.

If you did this exercise but were off by one, that’s fine. The exact numbers aren’t that important.

An earlier version of this slide incorrectly
stated that the number of < operations could
be zero.

Goal: Measuring Code Efficiency
Intuitive Runtime Characterizations

• Clock Time
• Exact Operation Counting
• Exact Count Exercise

Asymptotic Analysis
• Why Scaling Matters
• Computing Worst Case Order of

Growth (Tedious Approach)
• Computing Worst Case Order of

Growth (Simplified Approach)
Asymptotic Notation

• Big Theta (a.k.a. Order of Growth)
• Big O and Big Omega

Why Scaling
Matters
Lecture 13, CS61B, Spring 2024

Comparing Algorithms

Which algorithm is better? Why?

operation symbolic
count

count,
N=10000

i = 0 1 1

less than (<) 0 to N 0 to 10000

increment (+=1) 0 to N - 1 0 to 9999

equals (==) 1 to N - 1 1 to 9999

array accesses 2 to 2N - 2 2 to 19998

operation symbolic count count, N=10000

i = 0 1 1

j = i + 1 1 to N 1 to 10000

less than (<) 2 to (N2+3N+2)/2 2 to 50,015,001

increment (+=1) 0 to (N2+N)/2 0 to 50,005,000

equals (==) 1 to (N2-N)/2 1 to 49,995,000

array accesses 2 to N2-N 2 to 99,990,000

dup1
dup2

Comparing Algorithms

Which algorithm is better? dup2. Why?

operation symbolic
count

count,
N=10000

i = 0 1 1

less than (<) 0 to N 0 to 10000

increment (+=1) 0 to N - 1 0 to 9999

equals (==) 1 to N - 1 1 to 9999

array accesses 2 to 2N - 2 2 to 19998

operation symbolic count count, N=10000

i = 0 1 1

j = i + 1 1 to N 1 to 10000

less than (<) 2 to (N2+3N+2)/2 2 to 50,015,001

increment (+=1) 0 to (N2+N)/2 0 to 50,005,000

equals (==) 1 to (N2-N)/2 1 to 49,995,000

array accesses 2 to N2-N 2 to 99,990,000

● Fewer operations to do the same work [e.g. 50,015,001 vs. 10000 operations].
● Better answer: Algorithm scales better in the worst case. (N2+3N+2)/2 vs. N.
● Even better answer: Parabolas (N2) grow faster than lines (N).

dup1
dup2

Asymptotic Behavior

In most cases, we care only about asymptotic behavior, i.e. what happens
for very large N.
● Simulation of billions of interacting particles.
● Social network with billions of users.
● Logging of billions of transactions.
● Encoding of billions of bytes of video data.

Algorithms which scale well (e.g. look like lines) have better asymptotic runtime
behavior than algorithms that scale relatively poorly (e.g. look like parabolas).

Parabolas vs. Lines

Suppose we have two algorithms that zerpify a collection of N items.
● zerp1 takes 2N2 operations.
● zerp2 takes 500N operations.

For small N, zerp1 might be faster, but as dataset size grows, the parabolic
algorithm is going to fall farther and farther behind (in time it takes to complete).

Scaling Across Many Domains

We’ll informally refer to the “shape” of a runtime function as its
order of growth (will formalize soon).
● Effect is dramatic! Often determines whether a problem can be solved at all.

(from Algorithm Design: Tardos, Kleinberg)

Duplicate Finding

Our goal is to somehow characterize the runtimes of the functions below.
Characterization should be simple and mathematically rigorous.
Characterization should demonstrate superiority of dup2 over dup1.

operation symbolic
count

i = 0 1

less than (<) 0 to N

increment (+=1) 0 to N - 1

equals (==) 1 to N - 1

array accesses 2 to 2N - 2

operation symbolic count

i = 0 1

j = i + 1 1 to N

less than (<) 2 to (N2+3N+2)/2

increment (+=1) 0 to (N2+N)/2

equals (==) 1 to (N2-N)/2

array accesses 2 to N2-N

dup1: parabolic, a.k.a. quadratic dup2: linear

Goal: Measuring Code Efficiency
Intuitive Runtime Characterizations

• Clock Time
• Exact Operation Counting
• Exact Count Exercise

Asymptotic Analysis
• Why Scaling Matters
• Computing Worst Case Order of

Growth (Tedious Approach)
• Computing Worst Case Order of

Growth (Simplified Approach)
Asymptotic Notation

• Big Theta (a.k.a. Order of Growth)
• Big O and Big Omega

Computing Worst
Case Order of
Growth (Tedious
Approach)
Lecture 13, CS61B, Spring 2024

Duplicate Finding

Our goal is to somehow characterize the runtimes of the functions below.
● Characterization should be simple and mathematically rigorous.

operation count

i = 0 1

less than (<) 0 to N

increment (+=1) 0 to N - 1

equals (==) 1 to N - 1

array accesses 2 to 2N - 2

operation count

i = 0 1

j = i + 1 1 to N

less than (<) 2 to (N2+3N+2)/2

increment (+=1) 0 to (N2+N)/2

equals (==) 1 to (N2-N)/2

array accesses 2 to N2-N

Let’s be more careful about what we mean when we say the left function is “like”
a parabola, and the right function is “like” a line.

Intuitive Simplification 1: Consider Only the Worst Case

Simplification 1: Consider only the worst case.

operation count

i = 0 1

j = i + 1 1 to N

less than (<) 2 to (N2+3N+2)/2

increment (+=1) 0 to (N2+N)/2

equals (==) 1 to (N2-N)/2

array accesses 2 to N2-N

for (int i = 0; i < A.length; i += 1) {

 for (int j = i+1; j < A.length; j += 1) {

 if (A[i] == A[j]) {

 return true;

 }

 }

}

return false;

Intuitive Simplification 1: Consider Only the Worst Case

Simplification 1: Consider only the worst case.
● Justification: When comparing algorithms, we often care only about the worst

case [but we will see exceptions in this course].

operation worst case count

i = 0 1

j = i + 1 N

less than (<) (N2+3N+2)/2

increment (+=1) (N2+N)/2

equals (==) (N2-N)/2

array accesses N2-N

for (int i = 0; i < A.length; i += 1) {

 for (int j = i+1; j < A.length; j += 1) {

 if (A[i] == A[j]) {

 return true;

 }

 }

}

return false;

We’re effectively focusing on the case where there are no
duplicates, because this is where there is a performance
difference.

Intuitive Order of Growth Identification: yellkey.com/safe

Consider the algorithm below. What do you expect will be the
order of growth of the runtime for the algorithm?
A. N [linear]
B. N2 [quadratic]
C. N3 [cubic]
D. N6 [sextic]

operation count

less than (<) 100N2 + 3N

greater than (>) 2N3 + 1

and (&&) 5,000

In other words, if we plotted total runtime vs. N, what shape would we expect?

Intuitive Order of Growth Identification

Consider the algorithm below. What do you expect will be the
order of growth of the runtime for the algorithm?
A. N [linear]
B. N2 [quadratic]
C. N3 [cubic]
D. N6 [sextic]

operation count

less than (<) 100N2 + 3N

greater than (>) 2N3 + 1

and (&&) 5,000

Argument:
● Suppose < takes α nanoseconds, > takes β nanoseconds, and && takes γ

nanoseconds.
● Total time is α(100N2 + 3N) + β(2N3 + 1) + 5000γ nanoseconds.
● For very large N, the 2βN3 term is much larger than the others.

Extremely important point.
Make sure you understand it!

Intuitive Simplification 2: Eliminate low order terms

Simplification 2: Ignore lower order terms
● Eventually, 0.000000000001N2.00000001 will grow bigger than 10000000000N2

● So for sufficiently large N, only the largest term will actually matter

operation worst case count

i = 0 1

j = i + 1 N

less than (<) (N2+3N+2)/2

increment (+=1) (N2+N)/2

equals (==) (N2-N)/2

array accesses N2-N

for (int i = 0; i < A.length; i += 1) {

 for (int j = i+1; j < A.length; j += 1) {

 if (A[i] == A[j]) {

 return true;

 }

 }

}

return false;

(Not as) Intuitive Simplification 3: Eliminate multiplicative constants

Simplification 3: Ignore any coefficients
● Coefficients don't affect the "shape" of the function
● Often can change depending on what you consider "one operation"
● There are some branches of runtime analysis which care about coefficients.

But it's much harder, because…

operation worst case count

i = 0 1

j = i + 1 N

less than (<) N2/2

increment (+=1) N2/2

equals (==) N2/2

array accesses N2

for (int i = 0; i < A.length; i += 1) {

 for (int j = i+1; j < A.length; j += 1) {

 if (A[i] == A[j]) {

 return true;

 }

 }

}

return false;

Intuitive Simplification 4: Combine all operations

Simplification 4: Treat all operations as taking "1 unit of time"
● Even if an increment takes 1 ns and an array access takes 1000000 ns, those

are still basically coefficients
● Also lets as pick what we count as a "primitive" operation arbitrarily
● Assumes that operations (ex. addition) take constant time regardless of input;

this is known as the "cost model".
operation worst case count

i = 0 1

j = i + 1 N

less than (<) N2

increment (+=1) N2

equals (==) N2

array accesses N2

for (int i = 0; i < A.length; i += 1) {

 for (int j = i+1; j < A.length; j += 1) {

 if (A[i] == A[j]) {

 return true;

 }

 }

}

return false;

Simplification Summary

Simplifications:
1. Only consider the worst case.
2. Ignore lower order terms.
3. Ignore any coefficients.
4. All operations take the same time.

operation worst case o.o.g.

Total N2

operation count

i = 0 1

j = i + 1 1 to N

less than (<) 2 to (N2+3N+2)/2

increment (+=1) 0 to (N2+N)/2

equals (==) 1 to (N2-N)/2

array accesses 2 to N2-N

These three simplifications are OK because we only
care about the “order of growth” of the runtime.

Worst case order of growth of runtime: N2

Simplification Summary: Repeating the Process for dup2

Simplifications:
1. Only consider the worst case.
2. Ignore lower order terms.
3. Ignore any coefficients.
4. All operations take the same time.

operation worst case o.o.g.

These three simplifications are OK because we only
care about the “order of growth” of the runtime.

operation count

i = 0 1

less than (<) 0 to N

increment (+=1) 0 to N - 1

equals (==) 1 to N - 1

array accesses 2 to 2N - 2

Worst case order of growth of runtime:

Repeating the Process for dup2

Simplifications:
1. Only consider the worst case.
2. Ignore lower order terms.
3. Ignore any coefficients.
4. All operations take the same time.

operation worst case o.o.g.

Total N

operation count

i = 0 1

less than (<) 0 to N

increment (+=1) 0 to N - 1

equals (==) 1 to N - 1

array accesses 2 to 2N - 2

These three simplifications are OK because we only
care about the “order of growth” of the runtime.

Worst case order of growth of runtime: N

This simplification is OK because we specifically
only care about worst case.

One thing to note: If N -> N2, then 2N -> (2N)2 = 4N2; doubling the size of the input
means 4x longer runtime
This is what we observed earlier! So despite all our simplifications, this theoretical
analysis matches our experimental values.

Summary of Our (Painful) Analysis Process

operation worst case o.o.g.

Total N2

operation count

i = 0 1

j = i + 1 1 to N

less than (<) 2 to (N2+3N+2)/2

increment (+=1) 0 to (N2+N)/2

equals (==) 1 to (N2-N)/2

array accesses 2 to N2-N

Worst case order of growth of runtime: N2

Our process:
● Construct a table of exact counts of all possible operations.
● Convert table into a worst case order of growth using 4 simplifications.

By using our simplifications from the outset, we can avoid building the table at all!

Summary of Our (Painful) Analysis Process

operation worst case o.o.g.

Total N2

operation count

i = 0 1

j = i + 1 1 to N

less than (<) 2 to (N2+3N+2)/2

increment (+=1) 0 to (N2+N)/2

equals (==) 1 to (N2-N)/2

array accesses 2 to N2-N

Worst case order of growth of runtime: N2

Goal: Measuring Code Efficiency
Intuitive Runtime Characterizations

• Clock Time
• Exact Operation Counting
• Exact Count Exercise

Asymptotic Analysis
• Why Scaling Matters
• Computing Worst Case Order of

Growth (Tedious Approach)
• Computing Worst Case Order of

Growth (Simplified Approach)
Asymptotic Notation

• Big Theta (a.k.a. Order of Growth)
• Big O and Big Omega

Computing Worst
Case Order of
Growth (Simplified
Approach)
Lecture 13, CS61B, Spring 2024

Simplified Analysis Process

Rather than building the entire table, we can instead:
● Treat anything that takes constant time (relative to N) as a single operation
● Figure out the order of growth for the count of that operation by either:

○ Making an exact count, then discarding the unnecessary pieces.
○ Using intuition and inspection to determine order of growth (only possible

with lots of practice).

Let’s redo our analysis of dup1 with this new process.
● This time, we’ll show all our work.

Analysis of Nested For Loops (Based on Exact Count)

Overall worst case runtime: Θ(N2)

int N = A.length;
for (int i = 0; i < N; i += 1)
 for (int j = i + 1; j < N; j += 1)

if (A[i] == A[j])
return true;

return false;

Find the order of growth of the worst case runtime of dup1.

Analysis of Nested For Loops (Based on Exact Count)

Overall worst case runtime: Θ(N2)

int N = A.length;
for (int i = 0; i < N; i += 1)
 for (int j = i + 1; j < N; j += 1)

//1 unit of time
return false;

Find the order of growth of the worst case runtime of dup1.

Analysis of Nested For Loops (Based on Exact Count)

Find the order of growth of the worst case runtime of dup1.

Worst case number of steps:

Overall worst case runtime: Θ(N2)

1 1 1 1 1

1 1 1 1

1 1 1

1 1

1

0

1

2

3

4

5

0 1 2 3 4 5

i

j

int N = A.length;
for (int i = 0; i < N; i += 1)
 for (int j = i + 1; j < N; j += 1)

//1 unit of time
return false;

C = (N - 1) + (N - 2) + (N - 3) + … + 3 + 2 + 1

2C = N + N + … + N

N-1 of these

= N(N - 1)

∴ C = N(N - 1)/2

C = 1 + 2 + 3 + … + (N - 3) + (N - 2) + (N - 1)

N = 6

Analysis of Nested For Loops (Based on Exact Count)

Find the order of growth of the worst case runtime of dup1.

Worst case number of steps:

Overall worst case runtime: Θ(N2)

1 1 1 1 1

1 1 1 1

1 1 1

1 1

1

0

1

2

3

4

5

0 1 2 3 4 5

i

j

int N = A.length;
for (int i = 0; i < N; i += 1)
 for (int j = i + 1; j < N; j += 1)

//1 unit of time
return false;

C = 1 + 2 + 3 + … + (N - 3) + (N - 2) + (N - 1) = N(N-1)/2

N = 6

operation worst case o.o.g.

== N2

Worst case order of growth of runtime: N2

Analysis of Nested For Loops (Simpler Geometric Argument)

Find the order of growth of the worst case runtime of dup1.

Overall worst case runtime: Θ(N2)

1 1 1 1 1

1 1 1 1

1 1 1

1 1

1

0

1

2

3

4

5

0 1 2 3 4 5

i

j

int N = A.length;
for (int i = 0; i < N; i += 1)
 for (int j = i + 1; j < N; j += 1)

//1 unit of time
return false;

N = 6

Worst case number of steps:

● Given by area of right triangle of side length N-1.
● Order of growth of area is N2.

operation worst case o.o.g.

== N2

Worst case order of growth of runtime: N2

Goal: Measuring Code Efficiency
Intuitive Runtime Characterizations

• Clock Time
• Exact Operation Counting
• Exact Count Exercise

Asymptotic Analysis
• Why Scaling Matters
• Computing Worst Case Order of

Growth (Tedious Approach)
• Computing Worst Case Order of

Growth (Simplified Approach)
Asymptotic Notation

• Big Theta (a.k.a. Order of Growth)
• Big O and Big Omega

Big Theta (a.k.a.
Order of Growth)
Lecture 13, CS61B, Spring 2024

Formalizing Order of Growth

Given a function Q(N), we can apply our last two simplifications
(ignore low orders terms and multiplicative constants) to yield the order of growth
of Q(N).
● Example: Q(N) = 3N3 + N2

● Order of growth: N3

Let’s finish out this lecture by moving to a more formal notation called Big-Theta.
● The math might seem daunting at first.
● … but the idea is exactly the same! Using “Big-Theta” instead of “order of

growth” does not change the way we analyze code at all.

Order of Growth Exercise

Consider the functions below.
● Informally, what is the “shape” of each function for very large N?
● In other words, what is the order of growth of each function?

function order of growth

N3 + 3N4

1/N + N3

1/N + 5

NeN + N

40 sin(N) + 4N2

Order of Growth Exercise

Consider the functions below.
● Informally, what is the “shape” of each function for very large N?
● In other words, what is the order of growth of each function?

function order of growth

N3 + 3N4 N4

1/N + N3 N3

1/N + 5 1

NeN + N NeN

40 sin(N) + 4N2 N2

Big-Theta

Suppose we have a function R(N) with order of growth f(N).
● In “Big-Theta” notation we write this as R(N) ∈ Θ(f(N)).
● Examples:

○ N3 + 3N4 ∈ Θ(N4)
○ 1/N + N3 ∈ Θ(N3)
○ 1/N + 5 ∈ Θ(1)
○ NeN + N ∈ Θ(NeN)
○ 40 sin(N) + 4N2 ∈ Θ(N2)

function R(N) order of growth

N3 + 3N4 N4

1/N + N3 N3

1/N + 5 1

NeN + N NeN

40 sin(N) + 4N2 N2

Big-Theta: Formal Definition (Visualization)

means there exist positive constants k1 and k2 such that:

for all values of N greater than some N0.
i.e. very large N

Example: 40 sin(N) + 4N2 ∈ Θ(N2)
● R(N) = 40 sin(N) + 4N2

● f(N) = N2

● k1 = 3
● k2 = 5

http://datastructur.es/sp18/materials/demos/asymptotics.html?rN=4*N%5E2+40*sin(N)&fN=N%5E2&k1=3&k2=5&maxN=15&maxY=1000

 Big-Theta Challenge (Visualization)

Suppose R(N) = (4N2+3N*ln(N))/2.
● Find a simple f(N) and corresponding k1 and k2.

means there exist positive constants k1 and k2 such that:

for all values of N greater than some N0.
i.e. very large N

http://datastructur.es/sp18/materials/demos/asymptotics.html?rN=(4N%5E2+3N*log(N))/2

 Big-Theta Challenge (Visualization)

Suppose R(N) = (4N2+3N*ln(N))/2.
● f(N) = N2

● k1 = 1
● k2 = 3

means there exist positive constants k1 and k2 such that:

for all values of N greater than some N0.
i.e. very large N

http://datastructur.es/sp18/materials/demos/asymptotics.html?rN=(4N%5E2+3N*log(N))/2&fN=N%5E2&k1=1&k2=3&maxN=5

Using Big-Theta doesn’t change anything about runtime analysis
(no need to find k1 or k2 or anything like that).
● The only difference is that we use the Θ symbol anywhere we would have said

“order of growth”.

Big-Theta and Runtime Analysis

operation worst case count

Total Θ(N2)

operation worst case count

i = 0 1

j = i + 1 Θ(N)

less than (<) Θ(N2)

increment (+=1) Θ(N2)

equals (==) Θ(N2)

array accesses Θ(N2)

Worst case runtime: Θ(N2)

Goal: Measuring Code Efficiency
Intuitive Runtime Characterizations

• Clock Time
• Exact Operation Counting
• Exact Count Exercise

Asymptotic Analysis
• Why Scaling Matters
• Computing Worst Case Order of

Growth (Tedious Approach)
• Computing Worst Case Order of

Growth (Simplified Approach)
Asymptotic Notation

• Big Theta (a.k.a. Order of Growth)
• Big O and Big Omega

Big O and Big
Omega
Lecture 13, CS61B, Spring 2024

Big Theta

We used Big Theta to describe the order of growth of a function.

We also used Big Theta to describe the rate of growth of the runtime of a
piece of code.

function R(N) order of growth

N3 + 3N4 Θ(N4)

1/N + N3 Θ(N3)

1/N + 5 Θ(1)

NeN + N Θ(NeN)

40 sin(N) + 4N2 Θ(N2)

Big O and Big Omega

Whereas Big Theta can informally be thought of as something
like “equals”, Big O can be thought of as “less than or equal” and Big
Omega can be thought of as "greater than or equal"

Example, the following are all true:
● N3 + 3N4 ∈ Θ(N4)
● N3 + 3N4 ∈ O(N4)
● N3 + 3N4 ∈ O(N6)
● N3 + 3N4 ∈ O(NN!)
● N3 + 3N4 ∈ Ω(N4)
● N3 + 3N4 ∈ Ω(N2)
● N3 + 3N4 ∈ Ω(1)

Big-Theta: Formal Definition

means there exist positive constants k1 and k2 such that:

for all values of N greater than some N0.
i.e. very large N

Big O

means there exists a positive constant k2 such that:

for all values of N greater than some N0.
i.e. very large N

Big Omega

means there exists a positive constant k1 such that:

i.e. very large N

for all values of N greater than some N0.

Big Theta vs. Big O

Informal meaning: Family Family Members

Big Theta

Θ(f(N))
Order of growth is

f(N).
Θ(N2) N2/2

2N2

N2 + 38N + N

Big O

O(f(N))
Order of growth is
less than or equal

to f(N).

O(N2) N2/2
2N2

lg(N)

Big Omega

Ω(f(N))
Order of growth is

greater than or
equal to f(N).

Ω(N2) N2/2
2N2

NN!

We will see why big O is practically useful in the upcoming Disjoint Sets lecture.

Summary

Given a code snippet, we can express its runtime as a function R(N), where
N is some property of the input of the function (often the size of the input).

Rather than finding R(N) exactly, we instead usually only care about the order of
growth of R(N).

One approach (not universal):
● Reduce constant time operations to "1 unit of time", and let C(N) be the count

of how many times that operation occurs as a function of N.
● Determine order of growth f(N) for C(N), i.e. C(N) ∈ Θ(f(N))

○ Often (but not always) we consider the worst case count.
● Can use O as an alternative for Θ. O is used for upper bounds. Ω isn't used

often in practical settings, but is often used in theoretical CS for lower
bounds.

Citations

TSP problem solution, title slide:
http://support.sas.com/documentation/cdl/en/ornoaug/65289/HTML/default/vie
wer.htm#ornoaug_optnet_examples07.htm#ornoaug.optnet.map002g

Table of runtimes for various orders of growth: Kleinberg & Tardos, Algorithm
Design.

